-->

iklan banner

Soal Olimpiade Matematika Tingkat Internasional

Hallo temen-temen???
Pertama-tama gue ucapin trimakasih buat para pengunjung blog gue :). Slamat tiba di blog paling bermanfaat sedunia.
Dan gue doaian supaya orang-orang yang ngunjungin blog gue pada masuk nirwana semua, trs selama hidupnya selalu di beri kemudahan, trs all the best deh buat kalian :D
Udah kaya ulang tahun aja ya ???.... Sorry ya klo penulis suka bercanda :)
Kembali lagi bersama gue muhamad pajar sidik, gue yakni seorang penulis blogger yang ganteng dan baik hati :D cieeee.....
Di hari yang indah ini alhamdulillah gue dapat nulis artikel kembali, yang mudah-mudahan artikel ini dapat bermanfaat buat kalian semua.
Kali ini gue bakalan nulis artikel ihwal Soal Olimpiade Matematika Tingkat Internasional, Tanpa panjang lebar lagi yo check it out !

Soal Olimpiade Matematika Tingkat Internasional

Version : English

First day

Tokyo, July 13 2003

Problem 1. Let A be a subset of the set S = {1, 2, ...., 1000000} containing exactly 101 elements. Prove that there exist numbers t1, t2, ..., t100 in S such that the sets :
Aj = {x + tj | x ∈ A} for j = 1, 2, ..., 100
are pairwise disjoint.

Problem 2. Determine all pairs of positive integers (a, b) such that
is a aktual integer.

Problem 3. A convex hexagon is given in which any two opposite sides have the following properti : the distance between their midpoints is 3/2 times the sum of their lenghts. Prove that all the angels of the hexagon are equal.
(A convex hexagon ABCDEF has three pairs of opposite sides : AB and DE, BC and EF, CD and FA.)

Second day

Tokyo, July 14, 2003

Problem 4. Let ABCD be a cyclic quardrilaterial. Let P, Q and R be the feet of the perpendiculars from D to lines BC, CA and AB respectively. Show that PQ = QR if and only if the besectors of ∠ABC and ∠ADC meet on AC.

Problem 5. Let n be a positive integer and x1, x2, ..., xn be real numbers with x1 < x2 < .... xn.
(a) Prove that :
(b) Show that equality holds if and only if 1, x2, ..., xn is an arithmatic sequence.

Problem 6. Let p be a prime number. Prove that there exist a prime number q such that for every integer n, the number np-p is not divisible by q.

Sekian artikel kali ini. Mohon maaf apabila ada salah-salah kata.
Akhir kata wassalamualaikum wr. wb.
Referensi :
  • Buku Olimpiade matematika (Wono Setya Budhi)

Sumber http://matematikaakuntansi.blogspot.com

Berlangganan update artikel terbaru via email:

0 Response to "Soal Olimpiade Matematika Tingkat Internasional"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel