-->

iklan banner

Cara Mencari Nilai Perbandingan Trigonometri Sudut Istimewa

Untuk lebih gampang memahami cara mencari nilai perbandingan trigonmetri pada sudut istimewa (30°, 45° dan 60°), terlebih dahulu harus paham dengan perbandingan trigonometri pada segitiga siku-siku khsusnya definisi sinus, cosinus dan tangen suatu sudut. Selain itu Anda juga harus paham dengan teorema pythagoras. Oke eksklusif saja pada pembahasannya, kini perhatikan gambar berikut.
Untuk lebih gampang memahami cara mencari nilai perbandingan trigonmetri pada sudut istimewa Cara Mencari Nilai Perbandingan Trigonometri Sudut Istimewa
Gambar di atas merupakan gambar segitiga sama sisi dengan besarnya masing-masing sudut ialah 60°. Pada ΔABC tersebut ditarik sebuah garis dari titik C menuju titik D yang tegak lurus dengan garis AB, sehingga membagi sudut ACB menjadi dua bab yang besarnya sama yakni 30°. Misalkan panjang AD = BD = x, maka panjang AC = BC = 2x. Dengan memakai teorema pythagoras maka panjang CD sanggup dicari yakni:
AC2 = AD2 + CD2
CD2 = AC2 – AD2
CD2 = (2x)2 – x2
CD2 = 4x2 – x2
CD2 = 3x2
CD = √(3x2)
CD = x√3

Sekarang kita cari nilai perbandingan trigonometri pada segitiga siku-siku ACD pada sudut 30°, yakni:
sin 30° = AD/AC = x/2x = ½
cos 30° = CD/AC = x√3/2x = ½√3
tan 30° = AD/CD = x/x√3 = (1/3)√3

Sekarang kita cari nilai perbandingan trigonometri pada segitiga siku-siku ACD pada sudut 60°, yakni:
sin 60° = CD/AC = x√3/2x = ½√3
cos 60° = AD/AC = x/2x = ½
tan 60° = CD/AD = √3x/x = √3

Bagaimana dengan perbandingan trigonometri pada sudut 45°? Silahkan perhatikan gambar segitiga siku-siku di bawah ini.
Untuk lebih gampang memahami cara mencari nilai perbandingan trigonmetri pada sudut istimewa Cara Mencari Nilai Perbandingan Trigonometri Sudut Istimewa
Perhatikan segitiga ABC di atas dengan siku-siku berada di titik A. Sudut A = 90°, sudut B =  C = 45°. Jika panjang AB = AC = x maka dengan teorema pythagoras kita sanggup cari panjang BC yakni:
BC2 = AB2 + AC2
BC2 = x2 + x2
BC2 = 2x2
BC = x√2

Sekarang kita cari perbandingan trigonometri pada sudut 45°, yakni:
sin 45° = AC/BC = x/x√2 = ½√2
cos 30° = AB/BC = x/x√2 = ½√2
tan 30° = AC/AB = x/x = 1

Berdasarkan klarifikasi diatas maka sanggup disimpulkan bahwa besarnya nilai perbadingan trigonometri pada sudut istimewa (30°, 45°, dan 60°) terlihat menyerupai tabel di bawah ini.
Untuk lebih gampang memahami cara mencari nilai perbandingan trigonmetri pada sudut istimewa Cara Mencari Nilai Perbandingan Trigonometri Sudut Istimewa
Demikian pembahasan cara mencari nilai perbadingan trigonometri pada sudut istimewa (30°, 45°, dan 60°).

Sumber http://mafia.mafiaol.com

Berlangganan update artikel terbaru via email:

0 Response to "Cara Mencari Nilai Perbandingan Trigonometri Sudut Istimewa"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel