-->

iklan banner

Harmonic Mean Formulas In Statistic

Harmonic Mean Formulas
Average harmonic is the average calculated by converting all data into fractions, of which the data value is used as the denominator and the numerator is 1, then all the fractions are summed and then used as the divisor of the amount of data.

Harmonic Mean Formulas in Statistic

H = n/(∑(1/xi))

Information :
H = average harmonic value
n = amount of data
∑ = sigma notation
xi = data

Example :
Please calculate the Harmonic mean of 3,5,6,6,7,10,12!

Answer :
n = 7
xi = 3,5,6,6,7,10,12
H = n/(∑(1/xi))
H = 7/((1/3)+(1/5)+(1/6)+(1/6)+(1/7)+(1/10)+(1/12))
H = 7/((4/12)+(1/5)+(2/12)+(2/12)+(1/7)+(1/10)+(1/12))

H = 7/(((4+2+2+1)/12)+(1/5)+(1/7)+(1/10))

H = 7/((9/12)+(1/5)+(1/7)+(1/10))

H = 7/((9/12)+(2/10)+(1/7)+(1/10))

H = 7/((9/12)+((2+1)/10)+(1/7))
H = 7/((9/12)+(3/10)+(1/7))
H = 7/((9/12)+(21/70)+(10/70))
H = 7/((9/12)+((21+10)/70))
H = 7/((9/12)+(31/70))
H = 7/((630/840)+(372/840))
H = 7/((630+372)/840)
H = 7/((1002)/840)
H = 7 x (840/1002)
H = 5880/1002
H = 5,87
So the harmonic average of 3,5,6,6,7,10,12 is 5,87

So just this article which I can share to you.
I apologize if there are wrong word on this article
The end of word wassalamualaikum wr. wb.

Sumber http://matematikaakuntansi.blogspot.com

Berlangganan update artikel terbaru via email:

0 Response to "Harmonic Mean Formulas In Statistic"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel