Pembahasan Matematika Ipa Un 2018 No. 31 - 36

Pembahasan soal-soal Ujian Nasional (UN) tahun 2018 bidang studi Matematika SMA-IPA nomor 31 hingga dengan nomor 36 tentang:
- statistika [kuartil bawah],
- statistika [modus],
- kaidah pencacahan [susunan angka],
- kaidah pencacahan [susunan buku],
- kaidah pencacahan [kombinasi], dan
- peluang kejadian.
Soal No. 31 wacana Statistika [kuartil bawah]
Kuartil bawah dari data pada tabel distribusi frekuensi di bawah ini yaitu ….
A. 44,50
B. 45,75
C. 46,50
D. 46,75
E. 47,75
Baca Juga
Interval | Frekuensi |
40 – 44 | 12 |
45 – 49 | 20 |
50 – 54 | 15 |
55 – 59 | 30 |
60 – 64 | 12 |
65 – 69 | 11 |
A. 44,50
B. 45,75
C. 46,50
D. 46,75
E. 47,75
Pembahasan
Jumlah data pada tabel di atas adalah:N = 100
Kelas kuartil bawah (Q1) terletak pada 1/4 data pertama.
¼ N = ¼ × 100
= 25
Berarti kelas kuartil pada terletak pada baris kedua.
Perhatikan tabel berikut beserta besaran-besaran yang dibutuhkan dalam memilih nilai kuartil bawah.

Berdasarkan tabel di atas diperoleh data:
tb = 45 − 0,5
= 44,5
i = 65 − 60
= 5
fk = 12
f = 20
Dengan demikian, nilai kuartil bawah data di atas adalah:

Jadi, kuartil bawah dari data pada tabel distribusi frekuensi di atas yaitu
Perdalam bahan ini di Pembahasan Matematika IPA UN: Statistika
Soal No. 32 wacana Statistika [modus]
Perolehan nilai tes siswa suatu kelas disajikan pada histogram berikut.
Nilai tes siswa terbanyak yaitu ….
A. 74,75
B. 75,50
C. 75,75
D. 76,50
E. 77,50

Nilai tes siswa terbanyak yaitu ….
A. 74,75
B. 75,50
C. 75,75
D. 76,50
E. 77,50

Pembahasan
Nilai siswa terbanyak yaitu nilai modus. Nilai modus berada pada kelas dengan frekuensi tertinggi, yaitu terletak pada 74,5 – 79,5.Untuk memilih nilai modus, perhatikan analisis histogram berikut ini!

Berdasarkan analisis histogram di atas diperoleh:
tb = 74,5
d1 = 15 − 9 = 6
d1 = 15 − 6 = 9
i = 89,5 − 84,5 = 5
Nilai modus sanggup ditentukan dengan rumus:

Jadi, nilai tes siswa terbanyak yaitu 76,50 (D).
Perdalam bahan ini di Pembahasan Matematika IPA UN: Statistika
Soal No. 33 wacana Kaidah Pencacahan [susunan angka]
Dari angka-angka 2, 3, 5, 6, 8, 9 akan disusun bilangan yang terdiri atas 3 angka berlainan. Banyak bilangan lebih besar dari 500 yang sanggup dibentuk yaitu ….
A. 120
B. 80
C. 64
D. 60
E. 40
A. 120
B. 80
C. 64
D. 60
E. 40
Pembahasan
Cara 1 (perkalian)Dari angka-angka 2, 3, 5, 6, 8, 9 (6 angka) disusun bilangan 3 angka. Bilangan 3 angka yaitu bilangan ratusan.
Agar nilainya lebih dari 500 maka angka yang menempati posisi ratusan haruslah 5, 6, 8, dan 9 (4 angka). Posisi puluhan dan satuan boleh diisi angka berapa saja.
Jumlah angka yang menempati posisi puluhan hanya 5 angka sebab 1 angka telah menempati posisi ratusan. Sedangkan jumlah angka yang menempati posisi satuan hanya 4 angka sebab 2 angka masing-masing menempati posisi puluhan dan ratusan.

Hasilnya adalah:
4 × 5 × 5 = 80
Cara 2 (permutasi)
Dari 6 angka disusun bilangan 3 angka.

Agar nilainya lebih dari 500 maka angka depan harus 5, 6, 8, dan 9 (4 angka dari 6 angka). Diperoleh:
4/6×120=80
Jadi, banyak bilangan lebih besar dari 500 yang sanggup dibentuk yaitu 80 bilangan (B).
Perdalam bahan ini di Pembahasan Matematika IPA UN: Kaidah Pencacahan
Soal No. 34 wacana Kaidah Pencacahan [susunan buku]
Sebuah rak di perpustakaan berisi 3 buku matematika, 2 buka fisika dengan judul yang sama, dan 4 buku biologi. Banyak cara menyusun buku-buku dengan syarat buku pelajaran yang sama disusun berdekatan yaitu ….
A. 1.728
B. 1.608
C. 864
D. 72
E. 36
A. 1.728
B. 1.608
C. 864
D. 72
E. 36
Pembahasan
Banyak cara penyusunan daripada dirinci sebagai berikut:- 3 rak masing-masing diisi pelajaran yang sama.
3! = 3 × 2 × 1
= 6
- Rak matematika terdiri dari 3 buku berbeda
3! = 6
- Rak fisika terdiri dari 2 buku yang sama
1! = 1
- Rak biologi terdiri 4 buku berbeda
4! = 4 × 3 × 2 × 1Dengan demikian, banyaknya susunan yang mungkin adalah:
= 24
6 × 6 × 1 × 24 = 864
Jadi, Banyak cara menyusun buku-buku tersebut yaitu 864 cara (C).
Perdalam bahan ini di Pembahasan Matematika IPA UN: Kaidah Pencacahan
Soal No. 35 wacana Kaidah pencacahan [kombinasi]
Dalam suatu kelompok diskusi yang beranggotakan 4 laki-laki dan 6 perempuan akan dipilih 3 orang secara acak untuk mempresentasikan hasil diskusinya. Banyaknya cara memanggil 1 laki-laki dan 2 perempuan yaitu ….
A. 12
B. 19
C. 34
D. 60
E. 120
A. 12
B. 19
C. 34
D. 60
E. 120
Pembahasan
Banyak cara memanggil 1 laki-laki (dari 4 pria) dan 2 perempuan (dari 6 wanita):
Jadi, banyaknya cara memanggil 1 laki-laki dan 2 perempuan yaitu 60 cara (D).
Perdalam bahan ini di Pembahasan Matematika IPA UN: Kaidah Pencacahan
Soal No. 36 wacana Peluang Kejadian
Perusahaan listrik suatu wilayah menciptakan aktivitas pemadaman listrik pada 30 komplek perumahan yang ada pada wilayah cakupannya sebagai berikut:
Jika aktivitas pemadaman tersebut berlaku secara acak pada semua komplek, peluang terjadi pemadaman listrik di sebuah komplek pada hari Rabu atau Minggu yaitu ….
A. 1/300
B. 1/10
C. 1/15
D. 13/100
E. 7/30
Hari | Banyak komplek yang mengalami pemadaman |
Senin | 4 |
Selasa | 5 |
Rabu | 3 |
Kamis | 5 |
Jumat | 4 |
Sabtu | 5 |
Minggu | 4 |
Jika aktivitas pemadaman tersebut berlaku secara acak pada semua komplek, peluang terjadi pemadaman listrik di sebuah komplek pada hari Rabu atau Minggu yaitu ….
A. 1/300
B. 1/10
C. 1/15
D. 13/100
E. 7/30
Pembahasan
Banyak seluruh komplek yang mengalami pemadaman listrik:n(S) = 30
Misal A yaitu insiden pemadaman listrik pada hari Rabu dan B yaitu pemadaman pada hari Minggu, maka:
n(A) = 3
n(B) = 4
Peluang insiden A atau B adalah:

Jadi, peluang terjadi pemadaman listrik di sebuah komplek pada hari Rabu atau Minggu yaitu 7/30 (E).
Perdalam bahan ini di Pembahasan Matematika IPA UN: Teori Peluang
Pembahasan Matematika IPA UN 2018 No. 26 - 30
Pembahasan Matematika IPA UN 2018 No. 37 - 40 (Soal Isian)
Dapatkan pembahasan soal dalam file pdf di sini.
Demikian, menyebarkan pengetahuan bersama . Silakan bertanya di kolom komentar apabila ada pembahasan yang kurang jelas. Semoga berkah.
Sumber http://kakajaz.blogspot.com
0 Response to "Pembahasan Matematika Ipa Un 2018 No. 31 - 36"
Posting Komentar