Rumus Perkalian Bentuk Aljabar
Rumus Perkalian Bentuk Aljabar - Perhatikan kembali sifat distributif pada bentuk aljabar. Sifat distributif merupakan konsep dasar perkalian pada bentuk aljabar. Untuk lebih jelasnya, pelajari uraian berikut.
a. Perkalian Suku Satu dengan Suku Dua
Agar kau memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari teladan soal berikut.
Contoh Soal :
Gunakan aturan distributif untuk menuntaskan perkalian berikut.
a. 2(x + 3) c. 3x(y + 5)
b. –5(9 – y) d. –9p(5p – 2q)
Jawab:
a. 2(x + 3) = 2x + 6 c. 3x(y + 5) = 3xy + 15x
b. –5(9 – y) = –45 + 5y d. –9p(5p – 2q) = –45p2 + 18pq
b. Perkalian Suku Dua dengan Suku Dua
Agar kau memahami bahan perkalian suku dua dengan suku dua bentuk aljabar, pelajari teladan soal berikut.
Contoh Soal :
Tentukan hasil perkalian suku dua berikut, lalu sederhanakan.
a. (x + 5)(x + 3) c. (2x + 4)(3x + 1)
b. (x – 4)(x + 1) d. (–3x + 2)(x – 5)
Jawab:
a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3
= x2 + 5x + 3x + 15
= x2 + 8x + 15
b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1
= x2 – 4x + x – 4
= x2 – 3x – 4
c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1
= 6x2 + 12x + 2x + 4
= 6x2 + 14x + 4
d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5)
= –3x2 + 2x + 15x – 10
= –3x2 + 17x – 10
Sumber http://noivafelizal.blogspot.com
a. Perkalian Suku Satu dengan Suku Dua
Agar kau memahami perkalian suku satu dengan suku dua bentuk aljabar, pelajari teladan soal berikut.
Contoh Soal :
Gunakan aturan distributif untuk menuntaskan perkalian berikut.
a. 2(x + 3) c. 3x(y + 5)
b. –5(9 – y) d. –9p(5p – 2q)
Jawab:
a. 2(x + 3) = 2x + 6 c. 3x(y + 5) = 3xy + 15x
b. –5(9 – y) = –45 + 5y d. –9p(5p – 2q) = –45p2 + 18pq
b. Perkalian Suku Dua dengan Suku Dua
Agar kau memahami bahan perkalian suku dua dengan suku dua bentuk aljabar, pelajari teladan soal berikut.
Contoh Soal :
Tentukan hasil perkalian suku dua berikut, lalu sederhanakan.
a. (x + 5)(x + 3) c. (2x + 4)(3x + 1)
b. (x – 4)(x + 1) d. (–3x + 2)(x – 5)
Jawab:
a. (x + 5)(x + 3) = (x + 5)x + (x + 5)3
= x2 + 5x + 3x + 15
= x2 + 8x + 15
b. (x – 4)(x + 1) = (x – 4)x + (x – 4)1
= x2 – 4x + x – 4
= x2 – 3x – 4
c. (2x + 4)(3x + 1) = (2x + 4)3x + (2x + 4)1
= 6x2 + 12x + 2x + 4
= 6x2 + 14x + 4
d. (–3x + 2)(x – 5) = (–3x + 2)x + (–3x + 2)(–5)
= –3x2 + 2x + 15x – 10
= –3x2 + 17x – 10
0 Response to "Rumus Perkalian Bentuk Aljabar"
Posting Komentar